Government Polytechnic Kullu ,Distt. Kullu H.P-175138 Department of Electrical Engineering Lesson Plan | Name of Faculty | Er Naval Kishor | |----------------------|------------------------| | Discipline | Electrical Engineering | | Semester | 5 th | | Subject | SG&P (L-5 Hrs./Week) | | Lesson Plan Duration | August - Nov. 2025 | | Week | Topic | Theory | |--|---|--| | 1 st
(01Aug. –07Aug.) | Unit – I Basics of
Protection | Necessity, functions of protective system, Normal and abnormal conditions | | 2 nd
(08Aug. – 14 Aug.) | Unit – I Basics of
Protection | Types of faults and their causes. Protection zones and backup protection | | 3 rd
(16Aug. – 22Aug.) | Unit – II Circuit
Interruption Devices | Isolators - Vertical break, Horizontal break and Pantograph
type. HRC fuses - Construction, working, characteristics and
applications | | 4 th
(23Aug- 29Aug.) | Unit – II Circuit
Interruption Devices | Arc formation process, methods of arc extinction (High
resistance and Low resistance), Arc voltage, Recovery
voltage, Re-striking voltage, RRRV. | | 5 th
(30 Aug. –05 Sept.) | Unit – II Circuit
Interruption Devices | HT circuit breakers: Sulphur-hexa Fluoride (SF6), Vacuum circuit breaker – (Working, construction, specifications and applications). L.T. circuit breaker: Air circuit breakers (ACB), | | 6 th
(06 Sept. – 12 Sept.) | Unit – II Circuit
Interruption Devices | Miniature circuit breakers (MCB), Moulded case circuit
breakers (MCCB) and Earth leakage circuit breaker (ELCB)) - Working and applications. Brief introduction to gas insulated switchgear. | | Class Test - | Table purper your state. | In Second Week of September 2025 | | 7 th
(13 Sept. – 19 sept) | Unit- III Protective
Relays | Fundamental quality requirements: Selectivity, Speed, Sensitivity, Reliability, Simplicity, Economy. Basic relay terminology - Protective relay, Relay time, Pick up, Reset current, current setting, Plug setting multiplier, Time setting multiplier | | 8 th
(20 Sept. – 26Sept.) | Unit- III Protective
Relays | Protective relays: Classification, principle of working,
construction and operation of – Electromagnetic attraction
(Attracted armature type, Solenoid type and Watt-hour meter | | | | type only) relays.
Electromagnetic Induction relays: Over current relays: Block
diagram, working. | |---|--|--| | 9 th
(27 Sept. – 03 Oct.) | Unit- III Protective
Relays | Distance relaying- Principle, operation of Definite distance relays. Directional relay: Need and operation. Operation of current and voltage differential relay. Brief introduction to Thermal Relay. Brief introduction to Static and Microprocessor based relays and their applications. | | 10 th
(04 Oct. – 10 Oct.) | Unit- IV Protection of
Alternator and
Transformer
Alternator Protection | Alternator Protection:Faults, Differential protection over current, earth fault, overheating and field failure protection. Reverse power protection. | | Class Test - | 2 | In Third Week of October 2025 | | 11 th
(11 Oct. – 17 Oct.) | Unit- IV Protection of
Alternator and
Transformer
Alternator | Transformer Protection Different Faults (brief introduction), Differential, over current, earth fault, over heating protection. | | 12 th
(21 Oct. – 28 Oct.) | Unit- IV Protection of
Alternator and
Transformer
Alternator | Limitations of differential protection. Buchholz relay:
Construction, operation, merits and demerits. | | 13 th
(29 Oct. – 04 Nov.) | Unit- V Protection of
Motors, Bus-bar and
Transmission Line
Motor | Motors Faults, Short circuit protection, Overload protection
Single phase preventer | | Hou | se Test | In Second Week of November 2025 | | 14 th
(10 Nov. – 17 Nov.) | Unit-V Protection of
Motors, Bus-bar and
Transmission Line
Motor | Bus bar and Transmission line Faults on Bus bar and Transmission Lines. Bus bar protection: Differential and Fault bus protection. Transmission line: Over current, Distance and Pilot wire protection. | | 15 th
(18 Nov- 26 Nov) | | Revision and Doubt clearance | Signature of Teacher/Prepared by (Er.Naval Kishor) Signature of HOD (Er. Amar (Er. Aman ANAND) # Government Polytechnic Kullu at Seobagh ,Distt. Kullu H.P-175138 Department of Electrical Engineering Lesson Plan | Name of Faculty | Er. Naval Kishor | | |----------------------|------------------------|--| | Discipline | Electrical Engineering | | | Semester | 5th | | | Subject | SG&P (P-2 Hrs./Week) | | | Lesson Plan Duration | Aug- November 2025 | | | Week | Practical No. | Practical Name | |--|---------------|--| | 1 st
(4Aug. –11Aug.)
2 nd
(12Aug. – 18Aug.) | Practical-1 | Identify various switchgears in the laboratory and write their specifications | | 3 rd
(19Aug. – 25 Aug.)
4 th
(26 Aug – 01Sep.) | Practical-2 | Test HRC fuse by performing the load test. | | 5 th
(2Sept. –8 Sept.)
6 th | Practical-3 | Test MCB by performing the load test. | | (9Sept15Sept)
7th
(16Sept 22 Sept)
8 th
(23Sept 29Sept.) | Practical-4 | Dismantle MCCB/ELCB and identify various parts. | | 9 th
(30Sept. – 6 Oct.)
10 th
(8 Oct. – 14 Oct.) | Practical-5 | Dismantle ACB/VCB and identify different parts. | | 11 th
(15 Oct. – 22 Oct.)
12 th
(23 Oct. – 29 Oct.) | Practical-6 | Set the plug and time (with PSM, TSM) of induction type electromagnetic relay. | | 13 th
(30Oct. – 7 Nov.)
14 th
(17 Nov. – 23Nov.) | Practical-7 | Test electromagnetic over-current relay by performing load test. | | 15 th
(24Nov-26 Nov) | Revision | to availability of Time Students & Faculty. | NOTE: Lesson Plan is Tentative, subject to availability of Time, Students & Faculty. Signature of Teacher (Er. Naval Kishor) # Government Polytechnic Kullu, Distt. Kullu (H.P)175138 Department of Electrical Engineering Lesson Plan | Name of Faculty | Er Aman Anand | | |----------------------|------------------------|--| | Discipline | Electrical Engineering | | | Semester | 5th | | | Subject | EC&A (L-5 Hrs./Week) | | | Lesson Plan Duration | August - December 2025 | | | Week | Topic | Theory | |--|---|--| | 1*
(4Aug. –11Aug.) | Unit – I Energy
Conservation Basics | Energy Scenario: Primary and Secondary Energy, Energy
demand and supply, National scenario. Energy
conservation | | 2 [≈]
(12Aug. –
18Aug.) | Unit – I Energy
Conservation Basics | Energy audit; concepts and difference Star Labelling:
Need and its benefits | | 3™
(19Aug. – 25
Aug.) | Unit – II Energy
Conservation in
Electrical Machines | Need for energy conservation in induction motor. Energy
conservation techniques in induction motor by: Motor
survey Matching motor to load | | 4**
(26 Aug –
01Sep.) | Unit – II Energy
Conservation in
Electrical Machines | Operating in star mode. Rewinding of motor. Replacement by energy efficient motor, Periodic maintenance | | 5 ⁿ
(2Sept. –8 Sept.) | Unit – II Energy
Conservation in
Electrical Machines | Energy efficient motor; significant features, advantages,
applications and limitations. Need for energy
conservation in transformer: Energy efficient
transformers, amorphous transformers; epoxy Resin cast
transformer / Dry type of transformer | | Class Te | est – 1 | In Second Week of September 2025. | | 6°
(9Sept. –15Sept) | Unit- III Energy
conservation in
Electrical
Installation systems | Aggregated Technical and commercial losses (ATC);
Power system at state, regional, national and global level.
Technical losses; causes and measures to reduce these (no
expression only theory part) a) Controlling I 2R losses | | 7"
(16Sept. – 22
Sept) | Unit- III Energy
conservation in
Electrical
Installation systems | b) Optimizing distribution voltage c) Balancing phase
currents Energy conservation in lighting sources: | | 8*
(23Sept. –
29Sept.) | Unit- III Energy
conservation in
Electrical
Installation systems | a) Replacing Lamp sources. b) Using energy efficient luminaries | | 9 th
(30Sept. – 6
Oct.) | Unit- IV Energy
conservation
through
Cogeneration and
Tariff | Co-generation and Tariff; concept, significance for energy
conservation Co-generation Types of cogenerations on
basis of sequence of energy use (basic introduction to
Topping cycle & Bottoming cycle) | | 10 th
(8 Oct. – 14 Oct.) | Unit- IV Energy
conservation | Types of cogeneration basis of technology (Steam turbine cogeneration, Gas turbine cogeneration). Factors | | <u>/</u> | through
Cogeneration and
Tariff | governing the selection of cogeneration system, advantages of cogeneration. | |---------------------------------------|--|---| | Class Te | est - 2 | In Third Week of October 2025. | | 11*
(15 Oct. – 22
Oct.) | Unit- IV Energy
conservation
through
Cogeneration and
Tariff | Tariff: Types of tariff structure: Special tariffs; Time-off-
day tariff, Peak-off-day tariff, Power factor tariff,
Maximum Demand tariff, Load factor tariff. Application
of tariff system to reduce energy bill. | | 12th
(23 Oct. – 29
Oct.) | Unit- V Energy
Audit of Electrical
System | Energy audit (definition as per Energy Conservation Act)
Energy audit instruments and their use | | 13 th
(30Oct. – 7 Nov.) | Unit- V Energy
Audit of Electrical
System | Questionnaire for energy audit projects. Energy flow
diagram (Sankey diagram) | | House Test | | In Second Week of November 2025. | | 14"
(17 Nov. –
23Nov.) | Unit-V Energy
Audit of Electrical
System | Questionnaire for energy audit projects.Energy flow
diagram (Sankey diagram) | | 15"
(24Nov-26 Nov) | Revision | Revision & doubt clearance | Signature of Teacher (Er. Aman Anand) Principal Govt. Polytechnic, Kullu at Seobagh (H.P.) ### Government Polytechnic Kullu at Seobagh ,Distt. Kullu H.P-175138 **Department of Electrical Engineering** ### Lesson Plan | Name of Faculty . | Er. Lalit Kumar | |----------------------|------------------------| | Discipline | Electrical Engineering | | Semester | 5th | | Subject | EC&A (P-2 Hrs./Week) | | Lesson Plan Duration | Aug Dec 2025 | | Week | Practical No. | Practical Name | |---|---------------|--| | 1"
(4Aug. –11Aug.)
2" | Practical-1 | Identify star labelled electrical apparatus and compare the data for various star ratings. | | (12Aug. – 18Aug.)
3 rd
(19Aug. – 25 Aug.)
4 rd | Practical-2 | Determine the reduction in power consumption by replacement of lamps in a class room /laboratory. | | (26 Aug - 01Sep.) 5* (2Sept8 Sept.) 6* | Practical-3 | Determine the reduction in power consumption by replacement of Fans and regulators in a class room / laboratory. | | (9Sept. –15Sept) 7* (16Sept. – 22 Sept) 8* (23Sept. – 29Sept.) | Practical-4 | Collect electricity bill of a residential consumer and suggest
suitable means for conservation and reduction of the energy
bill. | | 9 ^a
(30Sept. – 6 Oct.)
10 ^a
(8 Oct. – 14 Oct.) | Practical-5 | Prepare an energy audit report (Phase-I) | | 11°
(15 Oct. – 22 Oct.) | Practical-6 | Prepare an energy audit report (Phase-II) | | (23 Oct 29 Oct.)
13"
(30Oct 7 Nov.) | Practical-7 | Prepare an energy audit report (Phase-III) | | 14"
(17 Nov. – 23Nov.) | ma 132542V | A DATE OF THE PARTY PART | | 15"
(24Nov-26 Nov) | Revision | | NOTE: Lesson Plan is Tentative, subject to availability of Time, Students & Faculty. Signature of Teacher (Er. Lalit Kumar) # Government Polytechnic Kullu, Distt. Kullu (H.P)175138 Department of Electrical Engineering Lesson Plan | Name of Faculty | Er Lalit Kumar | |----------------------|--| | Discipline | Electrical Engineering | | Semester | 5th | | Subject | Solar Power Technologies (L-5 Hrs./Week) | | Lesson Plan Duration | August - November 2025 | | Week | Topic | Theory | |--|--|--| | I st
(4Aug. –11Aug.) | Unit - I Unit - I Solar
Energy | Solar Map of India: Global solar power radiation
Different types of Solar water heaters: Construction,
working. | | 2 nd
(12Aug. – 18Aug.) | Unit - I Unit - I Solar
Energy | Different types of solar cookers, Solar Drying process, solar lighting, and Preventive maintenance of all of the above. | | 3 rd
(19Aug. – 25 Aug.) | Unit – II
Concentrated Solar
Power (CSP) | Concentrated Solar Power (CSP) plants or solar thermal electric systems | | 4th
(26 Aug – 01Sep.) | Unit – II
Concentrated Solar
Power (CSP) | Parabolic Trough: Construction, working and specifications
Parabolic Dish: Construction, working and specifications | | 5 th
(2Sept. –8 Sept.) | Unit – II
Concentrated Solar
Power (CSP) | Fresnel Reflectors: Construction, working and specifications
Preventive maintenance of all of the above | | Class Test | 1 | In Second Week of September 2025. | | 6 th
(9Sept. –15Sept) | Unit- III Solar PV
Systems | Solar PV cell: Types, construction, working of solar cells.
Solar PV working principle: Series and parallel connections
of solar modules | | 7th
(16Sept. – 22 Sept) | Unit- III Solar PV
Systems | Solar Photovoltaic (PV) system: components, layout and
working.
Solar modules and solar arrays. | | Qth | Unit- III Solar PV
Systems | Solar PV systems and typical specifications. Maintenance of all of the above. | | (23Sept. – 29Sept.) | Unit- IV Solar PV
Electronics | Solar Charge controllers: working and specifications,
switchgear and cables Batteries: Different types for solar PV
systems | | 9th
(30Sept. – 6 Oct.) | Unit- IV Solar PV
Electronics | Solar Inverters: working and specifications
Solar Power tracking: construction, working | | 10 th
(8 Oct. – 14 Oct.) | Unit- IV Solar PV
Electronics | tilt angle, maximum power point tracking (MPPT) Maintenance of these systems. | | Class Test | -2 | In Third Week of October 2025. | | 11th
(15 Oct. – 22 Oct.) | Unit- V Solar PV
Off-grid and Grid
Tied Systems | Solar off grid systems: layout and specifications | |---|---|---| | 12 th
(23 Oct. – 29 Oct.) | Unit- V Solar PV
Off-grid and Grid
Tied Systems | Solar Grid tied (on grid) systems: Working principle of grid-
tied dc-ac inverter. | | 13 th
(30Oct. – 7 Nov.) | Unit-V Solar PV
Off-grid and Grid
Tied Systems | Grid synchronization and active power export | | House Test | | In Second Week of November 2025. | | 14 th
(17 Nov. – 23Nov.) | Unit- V Solar PV
Off-grid and Grid
Tied Systems | Brief introduction to Solar-Wind Hybrid systems. | | 15 th
(24Nov-26 Nov) | Revision | Revision & doubt clearance | Signature of Teacher (Er. Lalit Kumar) ### Government Polytechnic Kullu at Seobagh ,Distt. Kullu H.P-175138 **Department of Electrical Engineering** Lesson Plan | Name of Faculty | Er. Lalit Kumar | |----------------------|------------------------| | Discipline | Electrical Engineering | | Semester | 5th | | Subject | SPT (P-2 Hrs./Wcek) | | Lesson Plan Duration | Aug Dec 2025 | | Week | Practical No. | Practical Name | |--|---------------|---| | 1 st
(4Aug. –11Aug.)
2 ^{ad}
(12Aug. – 18Aug.) | Practical-1 | Assemble the parabolic dish CSP plant. | | 3rd
(19Aug. – 25 Aug.)
4th
(26 Aug – 01Sep.) | Practical-2 | Dismantle the parabolic dish CSP plant. | | 5th
(2Sept. –8 Sept.)
6th
(9Sept. –15Sept) | Practical-3 | Troubleshoot a CSP plant | | 7 th
(16Sept. – 22 Sept)
8 th
(23Sept. – 29Sept.) | Practical-4 | Assemble the solar PV system. | | 9th
(30Sept. – 6 Oct.)
10th
(8 Oct. – 14 Oct.) | Practical-5 | Dismantle the solar PV system | | 11 th
(15 Oct. – 22 Oct.) | Practical-6 | Troubleshoot a solar PV system | | (23 Oct 29 Oct.)
13 th
(30Oct 7 Nov.) | Practical-7 | Troubleshoot a solar PV panels and arrays | | 14 th
(17 Nov. – 23Nov.) | | | | 15 th
(24Nov-26 Nov) | Revision | | NOTE: Lesson Plan is Tentative, subject to availability of Time, Students & Feculty. Signature of Teacher (Er. Lalit Kumar) # Government Polytechnic Kullu ,Distt. Kullu H.P-175138 Department of Electrical Engineering Lesson Plan | Electrical Engineering | |---| | 5 th | | Electric Vehicles (L-3 & DCS-2 Hrs./Week) | | August - Nov. 2025 | | | | Week | Topic | Theory | |--|--|---| | 1 ^{at}
(01Aug. –07Aug.) | Unit – I Introduction
to Hybrid Electric
Vehicles | Evolution of Electric vehicles Introduction to advanced Electric drive vehicle technology | | 2 nd
(08Aug. – 14 Aug.) | Unit – I Introduction
to Hybrid Electric
Vehicles | Vehicle types-Electric vehicles (EV), Hybrid Electric drive (HEV), | | 3 rd
(16Aug. – 22Aug.) | Unit – I Introduction
to Hybrid Electric
Vehicles | Plug in Electric vehicle (PIEV),
Advantages of HEV over ICE | | 4 th
(23Aug- 29Aug.) | Unit – II Dynamics of
hybrid and Electric
vehicles | General description of vehicle movement, Factors affecting
vehicle motion - Vehicle resistance, tyre ground adhesion,
rolling resistance, aerodynamic drag. | | 5 th
(30 Aug. –05 Sept.) | Unit – II Dynamics of
hybrid and Electric
vehicles | Classification of motors used in Electric vehicles (brief introduction) | | 6 th
(06 Sept. – 12 Sept.) | Unit – II Dynamics of
hybrid and Electric
vehicles | Basic architecture of hybrid drive trains, types of HEVs,
Energy saving potential of hybrid drive trains. | | Class Test - | | In Second Week of September 2025 | | 7 th
(13 Sept. – 19 sept) | Unit- III DC-DC
Converters for EV and
HEV | EV and HEV configuration based on power converters | | 8 th
(20 Sept. – 26Sept.) | Unit- III DC-DC
Converters for EV and
HEV | Classification of converters – unidirectional and bidirectional. Principle of step down operation. | | 9 th
(27 Sept. – 03 Oct.) | Unit- III DC-DC
Converters for EV and | Brief introduction of Boost and Buck- Boost converters. | | | HEV | | |---|--|---| | 10 th
(04 Oct. – 10 Oct.) | Unit- IV DC-AC
Inverter & Motors for
EV and HEVs | DC-AC Converters, Principle of operation of half bridge DC-
AC inverter (R load, R-L load) | | Class Test - | 2 | In Third Week of October 2025 | | 11 th
(11 Oct. – 17 Oct.) | Unit-IV DC-AC
Inverter & Motors for
EV and HEVs | Electric Machines used in EVs and HEVs(brief introduction), principle of operation | | 12 th
(21 Oct. – 28 Oct.) | Unit—IV DC-AC
Inverter & Motors for
EV and HEVs | working of Permanent magnet motors, switched reluctance
motor, applications of above motors. | | 13 th
(29 Oct. – 04 Nov.) | Unit- V Batteries
used in Electric
Vehicles | General description of batteries, material required for making batteries (brief introduction). Types of batteries (brief introduction) – Lithium-Ion Batteries | | Hou | se Test | In Second Week of November 2025 | | 14 th
(10 Nov. – 17 Nov.) | Unit- V Batteries
used in Electric
Vehicles | Nickel-Metal Hydride Batteries, Lead Acid Batteries and
Ultra capacitors.
Recycling of Batteries, limitations of Electric Vehicles. | | 15 th
(18 Nov- 26 Nov) | | Revision and Doubt clearance | Signature of Teacher/Prepared by (Er.Sandeep Bhardwaj) ## Government Polytechnic Kullu at Seobagh ,Distt. Kullu H.P-175138 Department of Electrical Engineering ### Lesson Plan | Name of Faculty | Er. Sandeep Bhardwaj | | |----------------------|-----------------------------------|--| | Discipline | Electrical Engineering | | | Semester | Sth | | | Subject | Electric Vehicles (P-2 Hrs./Week) | | | Lesson Plan Duration | Aug- November 2025 | | | Week | Practical No. | Practical Name | |--|---------------|---| | 1 st
(4Aug11Aug.)
2 nd
(12Aug 18Aug.) | Practical-1 | Develop block diagram of Electric vehicle and identify parts. | | 3 rd
(19Aug. – 25 Aug.)
4 th
(26 Aug – 01Sep.) | Practical-2 | Case study- Compare minimum four vehicles for economic and environmental analysis | | 5 th (2Sept8 Sept.) 6 th (9Sept15Sept) | Practical-3 | Develop schematic diagram of hybrid electric vehicle and identify various components. | | 7 th
(16Sept. – 22 Sept)
8 th
(23Sept. – 29Sept.) | Practical-4 | Prepare report on Plug in Electric vehicle by visiting a charging station | | 9 th
(30Sept. – 6 Oct.)
10 th
(8 Oct. – 14 Oct.) | Practical-5 | Prepare a report on batteries used from market survey. | | 11 th
(15 Oct. – 22 Oct.)
12 th
(23 Oct. – 29 Oct.) | Practical-6 | Case study- Compare various types of batteries used in electric vehicles | | 13 th
(30Oct. – 7 Nov.)
14 th
(17 Nov. – 23Nov.) | Practical-7 | List safety procedures and schedule for handling HEVs and EVs. | | 15 th
(24Nov-26 Nov) | Revision | | NOTE: Lesson Plan is Tentative, subject to availability of Time, Students & Faculty. Signature of Teacher (Er. Sandeep Bhardwaj) # Government Polytechnic Kullu, Distt. Kullu (H.P)175138 Department of Electrical Engineering Lesson Plan | Name of Faculty | Er Lalit Kumar - | |----------------------|---| | Discipline | Electrical Engineering | | Semester | 5th | | Subject | Wind Power Technologies (L-5 Hrs./Week) | | Lesson Plan Duration | August - November 2025 | | Week | Topic | Theory | |--|--|--| | 1 st
(4Aug. –11Aug.) | Unit – I Wind Energy
and Wind Power
Plants | Wind power scenario in the world and India. Wind Turbine Terminologies: (definitions only) Rotor blades, hub, nacelle, tower, electric sub-station, Cut in, cut-out and survival wind speeds, Threshold wind speeds, rated power, nominal power, Wind Power Curve. | | 2°f
(12Aug. – 18Aug.) | Unit – I Wind Energy
and Wind Power
Plants | Characteristics of Wind Energy: Wind movement, wind profile, roughness, effects of obstacles in wind path. Rotation principles: Drag and Lift principle, thrust and torque of wind turbine rotor. | | 3 rd
(19Aug. – 25 Aug.) | Unit – II Construction
and Working of Large
Wind Power Plants. | Major parts and Functions of WPP (brief introduction):
layouts of Geared, Direct-Drive Wind Power Plants. | | 4th
(26 Aug – 01Sep.) | Unit – II Construction
and Working of Large
Wind Power Plants. | Different types of Sensors (brief introduction): Anemometer, wind vane, rpm sensors of main shaft and generator, temperature sensors of nacelle, gearbox and generator; cable untwisting and vibration sensors. | | 5 th
(2Sept. –8 Sept.) | Unit – II Construction
and Working of Large
Wind Power Plants. | Different types of Actuators (brief introduction): Electric
and hydraulic pitching and yawing mechanisms, cable
untwisting and braking mechanisms | | Class Te | st – 1 | In Second Week of September 2025. | | 6 th
(9Sept. –15Sept) | Unit- III Maintenance
of Large Wind Power
Plants | General maintenance of WPPs: preventive maintenance
schedule of actuators such as yaw control, pitch control | | 7 th
(16Sept. – 22 Sept) | Unit- III Maintenance
of Large Wind Power
Plants | Braking mechanisms and sensors; oiling and greasing;
electric and electronic equipment related; tower related;
minor repairs, some tips. | | 8 th
23Sept. – 29Sept.) | Unit- IV Construction
and Working Small
Wind Turbines | Types and working of different type of small wind turbines (SWT): Classification: Horizontal and Vertical axis. | | 9th
30Sept. – 6 Oct.) | Unit- IV Construction
and Working Small
Wind Turbines | Upwind and Downwind, One, Two and Three blade. | | 10 th
(8 Oct. – 14 Oct.) | Unit-IV Construction
and Working Small
Wind Turbines | Parts of SWTs: Rotor, generator, gearbox, tower, electric control panel, tale vane, anemometer, wind vane, temperature and rpm sensors. | |--|--|---| | Class Tes | t-2 | In Third Week of October 2025. | | 11th
(15 Oct. – 22 Oct.) | Unit- V Maintenance
of Small Wind
Turbines | Small wind turbine assembly. | | 12th
(23 Oct. – 29 Oct.) | Unit- V Maintenance
of Small Wind
Turbines | Installation of different types of small wind turbines (SWT): tubular and lattice types. | | 13 th
(30Oct. – 7 Nov.) | Unit- V Maintenance
of Small Wind
Turbines | SWT Routine maintenance: Tips; Preventive maintenance schedule of: braking mechanisms | | House Test | | In Second Week of November 2025. | | 14 th
(17 Nov. – 23Nov.) | Unit- V Maintenance
of Small Wind
Turbines | Sensors; oiling and greasing related; electric and electronic equipment related; tower related; software related, minor repairs | | 15 th
(24Nov-26 Nov) | Revision | Revision & doubt clearance | Signature of Teacher (Er. Lalit Kumar) ## Government Polytechnic Kullu at Seobagh, Distt. Kullu H.P-175138 ### **Department of Electrical Engineering** ### Lesson Plan | Name of Faculty | Er. Sandeep Bhardwaj | |----------------------|--------------------------| | Discipline | Electrical Engineering 2 | | Semester | 5th | | Subject | illumination practices | | Lesson Plan Duration | August - November 2025 | | Week | Chapters | Topics | | |---|--|---|--| | 1 st
(4Aug. –11Aug.) | Unit – I
Fundamentals of
illumination | Basic Illumination, Terminology, Laws of illumination Polar curves (definition only | | | 2 nd Unit – I
(12Aug. –
18Aug.) Fundamentals of
illumination | | Measurement of illumination Lighting calculation methods (brief introduction only) | | | 3 rd Unit – II Types of lamps | | Incandescent lamp, ARC lamps – AC and DC arc lamps, Fluorescent lamp. Types of other lamps: Mercury vapour lamp, HPMV lamp | | | 4 th
(26 Aug –
01Sep.) | Unit – II Types of lamps | Mercury iodide lamp, Sodium vapour lamp, Halogen Lamps,
Ultraviolet Lamps, Neon Lamps, Neon Sign Tubes. Metal halides, HID
and Arc lamps, LED lamps, CFL, Lasers. Selection Criteria for lamps. | | | 5 th
(2Sept. –8 Sept.) | Unit- III Illumination
Control and Dimmer
Circuits | Purpose of lighting control and Dimmer circuits. Working principle
and operation of Dimmer circuits. Transformer and their types,
Dimmer Transformer | | | Class Test – 1 | | In Second Week of September 2025. | | | 6 th
(9Sept. –15Sept) | Unit- III Illumination
Control and Dimmer
Circuits | Auto transformer dimmer, two winding transformer dimmer
Electronic Dimmer: Brief introduction and applications (only | | | 7 th
(16Sept. – 22
Sept) | Unit- IV Illumination
for Interior
Applications | Standard for various locations of Interior Illumination. Design considerations for interior location of residences, | | | 8 th Unit- IV Illumination
(23Sept. – for Interior
29Sept.) Applications | | Commercial & Industrial premises. Illumination schemes for different interior locations of Residential Units , | | | | Unit- IV Illumination | I m | | |---|--|--|--| | 9 th
(30Sept. – 6
Oct.) | for Interior Applications | Illumination schemes for Commercial & industrial unit. | | | 10 th
(8 Oct. – 14 Oct.) | Unit- V Illumination
for Exterior
Applications | actory Lighting, Street Lighting (Latest Technology) | | | Class Test – 2 | | In Third Week of October 2025. | | | 11 th
(15 Oct. – 22
Oct.) | Unit-V Illumination
for Exterior
Applications | Flood Lighting, Railway Lighting, | | | 12 th
(23 Oct. – 29
Oct.) | Unit-V Illumination
for Exterior
Applications | Agriculture and Horticulture lighting | | | 13 th Unit-V Illumination for Exterior Applications | | Health Care Centres / Hospitals lighting | | | House Test | | In Second Week of November 2025. | | | 14 th (17 Nov. – 23Nov.) Unit- V Illumination for Exterior Applications | | Decorating Purposes, Stage Lighting | | | 15 th
(24Nov-26 Nov) | on particular | Revision | | Signature of Teacher (Er. Sandeep Bhardwaj) | Name of Teacher: Geeta Nand Subject: Student Centered Activities Class: 5th Semester Elect. Engg. | | | | | | |---|---------------|--|---|--|--| | | | | | | | | | | The street of th | Declamation Contest | | | | | | | Cleanliness Drive aroud college campus | | | | 1900 | August | 4th Aug to 30th Aug | Various Gym activities | | | | bos | | | the ORS complex begins to shore | | | | Ann | tile coot | ser aut naum dieidiren se | Sports activities - Table tennis complition | | | | 2 | September | Ist Sept to 30 Sept nownside | The ST segment occutestoom and the beginning of ventricular re- | | | | | Ty complete | s start to repolarize and is fin- | The T wave begins as the vanification | | | | | And the | etsty polities want o | Harmilat eyed seinnings ont night | | | | 1 4 | 125 | | Group discussion on varios topics | | | | last | igels ant to | an ECC or EKG, is a graph | The electrocardiogram, also culted | | | | | | 15t Oct to 20th Nov | Parliamentory discussions entracy visco | | | | - 1 | sigionina dia | e ECG, be aware of a few bi | northed antitio FCC Mhan seading a | | | | | | | Exposure to new Technologies. begge recept brabnets off . f | | | Faculty Incharge as one sent lesited the sent of the Electrical Engg. seconds or 4 ms. The space between two larger lines (5 small boxes or 1 arge box) is 0.20 seconds or 20 ms. - 4. The horizontal lines on the ECG measure voltage: - 5. The space cetween two small horizontal lines (one small box) is 1 mm or - .Vm 1.0 - the space between two larger horizontal lines (5 small boxes) is 5 mm or Vm ac Why ECG is performed An ECG may be performed to identify: To detect the abnormal neart rhythms (arrhythmiss) which may be caused by efectrical signals that are too slow, or too fast, or do not follow the normal path of conduction through the heart. Bearly when he had not been an house and